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The NASA Constellation program is utilizing Computational Fluid Dynamics (CFD) 
predictions for generating aerodynamic databases and design loads for the Ares I, Ares I-X, 
and Ares V launch vehicles and for aerodynamic databases for the Orion crew exploration 
vehicle and its launch abort system configuration. This effort presents several challenges to 
applied aerodynamicists due to complex geometries and flow physics, as well as from the 
juxtaposition of short schedule program requirements with high fidelity CFD simulations. 
NASA TetrUSS codes (GridTool/VGRID/USM3D) have been making extensive 
contributions in this effort. This paper will provide an overview of several enhancements 
made to the various elements of TetrUSS suite of codes. Representative TetrUSS solutions 
for selected Constellation program elements will be shown. Best practices guidelines and 
scripting developed for generating TetrUSS solutions in a production environment will also 
be described.  

I. Introduction 
NASA’s Constellation program1 was initiated to address the needs of U.S. access to space in the post Space 

Shuttle era with the mission to the moon, Mars and beyond. Unlike the Space Shuttle, where both crew and cargo 
are launched simultaneously, the proposed architecture for the Constellation program includes two separate launch 
vehicles: the Ares I for the crew and the Ares V for the cargo. The Ares I crew launch vehicle (CLV) is a two-stage 
rocket that incorporates a modified five-segment solid rocket booster from the Shuttle program while the upper stage 
is powered by the J-2X engine from the Apollo program. The major components of the vehicle as well as the 
proposed nominal flight trajectory are shown conceptually2 in figure 1. The major components of Ares-I CLV 
consist of the Upper Stage (US) and the First Stage (FS) Solid Rocket Booster (SRB) that includes the frustum and 
the aft-skirt. Ares-I is the launch vehicle for the Orion Crew Exploration Vehicle (CEV) and its Launch Abort 
System (LAS) as also illustrated in figure 1.  

The aerodynamic databases used for developing the Ares launch vehicles and the Orion CEV are being produced 
from a combination of wind tunnel testing and computational fluid dynamics (CFD) simulations. Since these vehicle 
geometries have such simple shapes, the original assumption was that CFD could serve as the primary source of 
aerodynamic data with wind tunnel testing in an anchoring role. However, the initial CFD analysis on these simple 
shapes quickly exposed complex flow fields primarily in association with blunt bases, protuberance effects, and 
close proximity jet interactions. The complex flow fields were also found to be challenging to model with CFD. 
Hence, the historical role of the wind tunnel as the primary source of aerodynamic data was restored, despite its own 
set of limitations and uncertainties. Even with CFD in a supporting role, thousands of solutions have been generated 
yielding an impressive amount of computational data for the Ares and Orion projects.  
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Within the subsonic/transonic/supersonic speed range, the computational aerodynamic database for Constellation 
was primarily generated from the NASA TetrUSS3/USM3D4,5, and OVERFLOW6 flow solvers. Since code-to-code 
uncertainty was a key concern, some additional support was also provided from the NASA FUN3D7 code. The 
NASA Cart3D inviscid code8 was also used heavily for screening broad ranges of parameter space within the Orion 
project. For the Ares flight vehicles, the USM3D code served as the primary computational data source with 
supporting role from the OVERFLOW code. For the Orion CEV and LAS, the OVERFLOW code provided the 
majority of computational data with USM3D serving in a support role for quantifying code-to-code uncertainty. In 
both cases, the CFD teams worked seamlessly across the NASA centers to deliver the needed data on time, while 
collaborating often to solve the unforeseen challenges that surfaced. 

Historically, TetrUSS has been a research tool. However, Ares and Orion were clearly development projects that 
demanded production-level efficiencies for data generation. Hence, many challenges were encountered while 
quickly transforming a research-oriented tool into a production-oriented tool in the midst of a fast-paced database 
generation campaign. Some of the challenges that were encountered during the application of TetrUSS tools in the 
Ares and Orion projects were: 
Early challenges: 

• Required grid sizes were much larger than USM3D could accommodate in memory, 
• Solver inefficiencies for large grids prohibited production-level throughput with USM3D,  
• How to quantify solution uncertainty,  
• Running and managing a large number of cases, 
• Post-processing and managing a massive amount of data. 

Computational challenges for Ares Project launch vehicles: 
• Need for 10-15 solutions per day on grids with 50 to 100+ million tetrahedral cells, 
• Efficient generation of tetrahedral grids suitable for flight Reynolds number on slender launch vehicle with 
    large disparity of geometric scale from small protuberances,  
• Numerical stiffness associated with modeling flows at flight Reynolds number, 
• Extracting line loads for structural design, 
• Extracting and organizing aerodynamic loads on numerous individual protuberances for structural design. 

Computational challenges for Orion Project LAS: 
• Large uncertainty in axial force due to strong sensitivities to grid resolution and turbulence models, 
• Inadequate turbulence models and gridding strategies for predicting strong jet interaction effects from abort 

motors, 
• Need for autonomous solution-adaptive grid capability for resolving complex jet-plume flows, 
• Throughput requests on order of 400 LAS jet interaction solutions per month. 

This paper presents an overview of how most of these challenges were successfully resolved. The paper is 
organized with Section II presenting a broad overview of the TetrUSS system. Section III includes a discussion of 
key enhancements to the grid generation capability that enabled the rapid generation of high-quality tetrahedral 
grids. A description of the solution-adaptive grid approach is also included. Section IV describes enhancements to 
the flow solver that overcame show stoppers for large applications such as memory bottlenecks, slow run times, 
crippling robustness issues for high-Mach number flows and startup of jet flows, inadequate jet boundary condition 
capability, and deficient turbulence models for strong jet/aero-interaction flows. The section V describes the 
processes devised for running and post-processing large numbers of cases. Finally, Section VI highlights some 
representative applications for the Ares I, IX, and V launch vehicles and the Orion Launch Abort System (LAS). 

II. Overview of TetrUSS Tool Set 
The NASA Tetrahedral Unstructured Software System (TetrUSS) was developed during 1990s to provide a rapid 

aerodynamic analysis and design capability to applied aerodynamicists. The system is comprised of loosely 
integrated, user-friendly software that enables the application of advanced Euler and Navier-Stokes tetrahedral finite 
volume technology to complex aerodynamic problems. A schematic view of the TetrUSS system is presented in 
figure 2. The system consists of component software for setting up geometric surface definitions (GridTool), 
generating tetrahedral grids (VGRID), computing Euler and Navier-Stokes flow solutions (USM3D), and extracting 
meaningful information from analysis of results (SimpleView). The system also allows for imposing design or 
aeroelastic shape changes by interfacing with other codes, such as CDISC9. An overview of the capabilities of 
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TetrUSS system in early 2000 is presented in reference 3. The salient features of the VGRID grid generator, 
USM3D flow solver, and various visualization as well as data analysis tools and utilities are presented below.  

A. Grid Generation  
VGRID is a tetrahedral grid generator based on the Advancing Front Method10 (AFM) for generation of the 

‘inviscid’ field cells and the Advancing Layers Method11 (ALM) for generation of thin-layered ‘viscous’ cells. Both 
techniques are based on a marching process in which tetrahedral cells grow on an initial front (triangular surface 
mesh) and gradually accumulate in the field around the subject geometry. Unlike the conventional AFM, which 
introduces cells in the field around in a totally unstructured manner, the ALM generates layers of thin tetrahedral 
cells in a more orderly fashion (one layer at a time) while maintaining the flexibility of AFM. Once the advancing 
front process is completed in VGRID, an additional post-processing step is required using POSTGRID to close any 
open pockets and to improve grid quality. VGRID input files are generated by an interactive geometry manipulation 
program, GridTool12. It can import surface definitions from IGES files (NURBS surfaces and NURBS curves) and 
from PLOT3D files (point definitions) and manipulate them to define necessary geometric (surface patches) and 
grid-spacing (sources) parameters. It uses OpenGL for 3D graphics. The graphical interface is based on the Fast 
Light Toolkit. GridTool is available for Mac and Linux systems. 

B. Flow Solver 
The USM3D4,5 code is a parallelized tetrahedral cell-centered, finite volume Navier-Stokes flow solver. The term 

cell centered means that the finite volume flow equations are solved at the centroid of each tetrahedral cell. Inviscid 
flux quantities are computed across each tetrahedral cell face using various upwind schemes. Spatial discretization is 
accomplished by a novel reconstruction process, based on an analytical formulation for computing solution gradients 
within tetrahedral cells. The solution is advanced in time by a second-order Newton time step scheme13, or to a 
steady-state condition by an implicit backward-Euler scheme. Several turbulence models are available: the Spalart-
Allmaras (SA) one-equation model5, the two-equation k-ε turbulence model, the Menter Shear Stress Transport 
(SST) two-equation model, and the nonlinear Algebraic Reynolds Stress Models (ARSM) of Girimaji and 
Shih/Zhu/Lumley14.  Detached Eddy Simulation (DES) has been implemented in all of the turbulence models. A 
capability to trip the flow at specified locations on aerodynamic surfaces has been implemented for the k-ε 
turbulence model, but fully turbulent flow is assumed for the results to follow. USM3D has capabilities for dynamic 
grid motion and overset grids15. 

C. Post Processing 
TetrUSS system has an interactive menu-driven post-processing program, SimpleView, which allows users to 

visualize unstructured grid and flow solution details. SimpleView uses OpenGL for 3D graphics and is available for 
Mac and Linux systems. The Mac version uses the native Cocoa user interface, while the Linux version uses a 
Motif-based interface. It can read grid files at any stage of the grid generation process and present either the entire 
grid generated or the surface mesh only. VGRID front files can also be read, either in conjunction with the grid or in 
a stand-alone mode. Several diagnostic tools are available inside SimpleView, particularly for the viscous layers of 
the grid. Users can verify the presence of viscous layers above any face on a viscous surface and obtain a count of 
the number of cells in the layers. Simpleview reads USM3D nodal solution file to display five conserved flow 
variables, as well as a number of derived variables, such as pressure coefficient or entropy. It can perform surface 
(line) and volume (planar) cuts. Surface data and planar cuts may be displayed as solid-shaded or contour lines. It 
can display oil flow and velocity vectors on the aerodynamic surfaces. It can also display velocity vectors and 
streamlines in the flow-field and find iso-surfaces.  

Standalone codes have also been developed to transform TetrUSS grid and solution files for visualization and 
post-processing using some of the major commercial software, such as TecPlot® , FieldView®, and EnSight®. Other 
stand-alone post-processing tools have also been developed for the data analysis. For example, a utility to extract 
sectional load distributions is available that will be described later in more detail. A TetrUSS grid and solution 
cutter16 utility for generalized sub-domain extraction of over 50 user-specified flow functions has recently been 
developed for efficient post processing of solutions. 

D. Utilities 
Several useful utility codes are maintained through a common interface called ‘usgutil’. They are: 
1. Mirroring of grid or VGRID input file, 
2. Extracting cross-sectional geometry and flow field data, 
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3. Estimating grid spacing and stretching parameters used in VGRID for viscous grids, and 
4. Scaling, translating, rotating of grid and swapping of coordinates. 
Additional standalone utilities have also been developed to enhance TetrUSS productivity. For example, a utility 

is developed to interpolate solution from coarse grid to a finer adapted grid. Another utility is available to identify 
trouble spots in difficult-to-converge or diverging solutions that can aid in the localized improvements to the grid 
quality. 

III. Enhancements to Grid Generation 
Grid generation presents a number of challenges within a production environment. Geometries are continually 

evolving and require frequent generation of new grids. The demands of airframe design necessitate adequate grid 
resolution to yield high-fidelity loads on very small components, such as the various protuberances and appendages 
on the Ares launch vehicle. The Ares and Orion flows are inherently complex and can manifest nonlinear effects due 
to shocks, separated flows, strong jet interactions, fluid/structure interactions, and blunt-base wakes. Most of these 
flow features can only be efficiently grid resolved using solution-adaptive grid capability. The following sub-
sections present some of the key enhancements to the grid generation capability that enabled the rapid generation of 
high-quality tetrahedral grids and flow solutions. 

A. NURBS Patches 
NURBS patches are a new versatile patch type incorporated in VGRID based on geometry routines from 

GridTool. NURBS patches can be defined with highly irregular boundary shapes and can be composed of an 
arbitrary number of sides. VGRID NURBS patches require an underlying NURBS surface definition. NURBS 
patches lead to a significant reduction in time spent for generating patches, because a NURBS surface definition can 
almost always be directly turned into one patch. The older parametric patches usually required extensive work to 
split a surface definition into 'good' patch shapes. Another benefit of NURBS patches is that grid points generated on 
NURBS patches are guaranteed to be on the original surface definition. Consequently, there is no need for time-
consuming projection of the surface grid onto the underlying surface definition. Also, NURBS patches can 
accommodate multiple-loop patches, where a patch has one or more holes in the middle. This allows for an easy 
insertion, deletion or modification of small geometric features that may be embedded in a larger feature, such as a 
protuberance on a fuselage. These features can be patched and sourced in a separate file, and subsequently placed 
anywhere on the original configuration. The features may even be transformed and translated to different positions 
and orientations, and inserted in multiple locations. 

B. Volume and Surface Sources 
A new approach for the distribution of grid points on the surface and in the volume has been developed and 

incorporated in VGRID17. In addition to the point and line sources, the new approach uses surface and volume 
sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new 
exponential growth function produces smoother and more efficient grids and provides superior control over the 
distribution of grid points in the field. Anisotropic grid stretching is still available for all types of sources for grid 
economy. The new approach makes use of an efficient bounding-box auxiliary medium for storing grid parameters 
defined by surface sources instead of three-dimensional background grids. These enhancements make the new 
approach less memory intensive and more computationally efficient. The latest version of VGRID has been used to 
generate a grid consisting of one billion tetrahedral cells around a generic wing-body transport configuration on an 
intel-Mac desktop.  

Figure 3 demonstrates an example of a grid around Apollo Launch Abort System using the enhanced VGRID. 
This configuration features several geometric complexities that present formidable challenges to grid generation 
such as truss beams in very close proximity with tight angles at end junctures, and grid extending through the abort 
motor nozzles and into the plenum. The grid in figure 3 was created from only seven volume sources around the 
vehicle and two volume sources in base wake region. The resulting grid of 48,355,970 tetrahedral cells and 
8,216,471 nodes was generated in 88 minutes of Central Processing Unit (CPU) time on a MacBook Pro laptop with 
a 2GHz Intel Core Duo processor and 2GB of RAM. The grid in the complex truss region is controlled by a single 
conical volume source that results in a high-quality thin-layered tetrahedral grid suitable for viscous flow 
simulations. 

 GridTool (used to prepare the input file for VGRID) has also been upgraded with several usability 
enhancements and includes support for the latest VGRID (version 4.1) features. In addition, it has been ported to 
several compute platforms such as Mac and Linux. 
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C. Improved Gridding Practices 
Grid spacing around cylindrical features of a slender configuration can be prescribed with either a ring of line 

sources or a single cylindrical volume source. Although a ring of line sources can add flexibility by allowing for 
localized changes in grid spacing, they also introduce undulations in the mesh as these sources deviate from an exact 
circle. For the small cylindrical features on the Constellation vehicles, such as extruding rings around the launch 
vehicle or steps around the launch abort vehicle tower, it was determined that cylindrical volume sources produce 
markedly better quality grids. The numerical resolution of such features requires a high longitudinal concentration of 
cells with relaxed concentration in the circumferential direction. It was found that a circumferential stretching of 
10:1 was generally acceptable, although the stretching was lowered to 5:1 in some regions. 

Nozzle jet flow regions were resolved with approximately 50 cells across the plume. Best results were achieved 
with uniform mesh size within the nozzle, which were generated with no stretching using a truncated conical volume 
source (a variation of the cylindrical source). Outside of the nozzle, the plumes were resolved by solution adaptive 
gridding, which offers more optimal grid point distribution. 

D. Solution Adaptive Gridding 
Solution adaptive gridding was accomplished by the CraftTech CRISP CFD® code18. CRISP CFD® is a stand-

alone tool for mesh modification and quality improvement of three-dimensional mixed-element unstructured 
meshes. Meshes comprised of tetrahedral, prismatic, and hexahedral regions may be readily modified to generate 
more accurate flow solutions through local refinement and coarsening. The adaption is driven by either an estimate 
of the solution error, or gradients of flow features. For tetrahedral cells as used in the present work, local refinement 
is achieved by means of a constrained Delaunay refinement algorithm combined with a circumcenter point 
placement strategy. Any inconsistency between the circumradius of a tetrahedron and some desired point spacing 
triggers the point insertion procedure. This iterative cell refinement is repeated until the cell circumradii are 
consistent with the prescribed point spacing. Coarsening of the tetrahedral region is also permitted through an edge 
collapse procedure. In regions where the grid is distorted or where solution errors are negligible, edges may be 
selected for removal. All cells incident to the deleted edge are removed from the mesh, the adjacent cells are 
redefined, and the two nodes of the edge are collapsed to a single vertex. Capability exists to modify the viscous 
layers of tetrahedral grids and underlying surface mesh. However, our initial experience has led us to only adapt in 
the inviscid region of the grid at this time.  

IV. Enhancements to Flow Solver 
The transition of USM3D from a research-oriented code to a production-oriented capability within a short time 

frame presented a challenge. The applications for the Constellation program required high throughput on very large 
grids. The immediate need for USM3D was to overcome several barriers to large-scale applications such as memory 
bottlenecks, slow run times, and crippling robustness issues for high-Mach number flows. Furthermore, 
improvements were required in the jet modeling capability within USM3D to address inadequate jet boundary 
conditions, difficulties with starting jet flows, and deficiencies of turbulence models for strong jet/aero-interaction 
flows. These deficiencies prevented any meaningful use of the tool within this project environment.  

The following enhancements were made to the flow solver to resolve these shortcomings. While largely driven 
by the urgent needs of the Constellation program, these enhancements will clearly benefit the broader aeronautics 
community. 

A. Overcoming Barriers 
1. Memory management for large-scale applications 
USM3D offers a large degree of flexibility in selecting the number of processors for running a solution from a 

global grid and restart file. Earlier versions of the flow solver made extensive use of the collective communication 
paradigm and supported FORTRAN unformatted grid files with large records. However, these features carried a 
large memory footprint within the code that impeded scalability of memory. The original implementation of 
parallel-processing inside USM3D was ideally suited for small to medium size grids (less than 20 million cells) 
running on shared memory machines, such as NASA Advanced Supercomputing (NAS) Columbia Altix. 
Unfortunately, this implementation was very inefficient on the NAS Columbia machine for grids over 50 million 
cells, due to excessive swapping of memory buffers.  

The Constellation program presented a growing need to resolve intricate geometric details on a large vehicle as 
seen in figure 4. Consequently, grids grew from approximately 20 million tetrahedral cells to over 120 million 
tetrahedral cells. Attempts to run USM3D on such large grids at NAS were further hampered in 2008 by the advent 



 

 
American Institute of Aeronautics and Astronautics 

 

 

6 

of distributed-memory machines with smaller memory per core (e.g., the Pleiades supercomputer with Xeon E5472 
Harpertown dual quad-core processors). To address this difficulty, several improvements were made to USM3D to 
reduce its runtime memory. For example, the enhanced flow solver could handle binary grid files and allowed for 
external pre-processing of grids for a parallel run. Additionally, extensive modifications were made to the flow 
solver data structures and inter-processor communication strategies to restore memory scalability.  

As a demonstration of this enhanced capability, a USM3D Navier-Stokes solution was generated on a civil 
transport configuration for the 4th AIAA Drag Prediction Workshop (DPW IV) using a grid of 212 million 
tetrahedral cells and the Spalart Allmaras turbulence model. This solution required a wall time of 4.62 seconds per 
iteration, using 700 grid partitions and 712 1-GB cores of NAS Pleiades Harpertown nodes. To date, the largest case 
to be successfully computed on the NAS Pleiades machine with the enhanced USM3D code is on a 623 million-cell 
mesh around the DPW IV geometry. 

2. Runtime Speedup 
The increased grid size also resulted initially in a significant increase in solution turnaround time, attributable to 

higher CPU and inter-processor communication times. In order to overcome this difficulty, USM3D’s internal grid 
pre-processing strategy was revised for a multi-processor run. Additionally, cache characteristics of the flow solver 
were improved. As a result of these enhancements, the speed up of the latest USM3D is five to six times the 2006 
version of USM3D.  

The upgraded USM3D has greatly increased its efficiency and productivity for the Constellation program. For 
example on an Ares I A106 task, the code was used to compute 800 high-quality Navier-Stokes solutions using a 90 
million-cell grid. These solutions were generated at a rate of 20 solutions per day using 6,000 CPUs on the NAS 
Pleiades cluster. 

3. Robustness for High-Mach Number Flows  
The Apollo Launch Abort System was selected in the precursor studies for developing simulation guidelines for 

the Orion project LAS database. The intricate details in the Apollo LAS including truss geometry (see fig. 3) 
coupled with high Mach flows adversely impacted robustness of USM3D solutions and brought the LAS simulation 
guideline study to a halt. 

To address these difficulties, three new inviscid flux schemes, namely, HLLC, AUSM+, and LDFSS were 
implemented in the flow solver. Additionally, several enhancements were made to the implicit solution procedure. 
These improvements made it possible to readily obtain converged Apollo Launch Abort System solutions up to 
Mach 6 using SA and SST turbulence models, as illustrated in figure 5. 

B. Modeling of Jet Flows 
The Ares series of launch vehicles utilize large numbers of control jets during ascent and stage separations to 

maintain stable flight. Similarly the Orion LAS utilizes powerful Abort Motor (AM) jets and smaller Attitude 
Control Motor (ACM) jets during a launch abort that dominate the aerodynamic characteristics of the vehicle. All of 
these jets operate at very high velocities and temperatures in close proximity to aerodynamic surfaces over a wide 
range of flight Mach numbers, from subsonic to supersonic. Within such flows, large gradients in pressure and 
temperature have a profound effect on the development of turbulence for transonic and supersonic jets. For high-
speed, high-temperature jet flows, standard turbulence models lack the ability to predict the experimentally observed 
mixing rate of a shear layer, which affects plume spreading and results in large predictive errors for the 
aerodynamics of jet/surface interactions. Prior to the Constellation program, USM3D had limited capability for 
prescribing multiple jets and was deficient in the turbulence models for jet flows. Hence, the following 
improvements were made. 

1. Generalized supersonic boundary conditions 
The baseline USM3D flow solver allowed modeling of up to four nozzles using a cumbersome input procedure. 

In order to increase the productivity of USM3D, a generalized supersonic inflow boundary condition was 
implemented that not only allowed for an unlimited number of nozzle jets but also obviated the need for painstaking 
specification of nozzle orientations. These boundary conditions are prescribed on selected patch surfaces for each jet 
using a simple utility code that generates an additional input file for the flow solver. The approach to defining the jet 
boundary conditions for the applications to Ares launch vehicles and Orion LAS configurations is described in 
Appendix A.  

2. Initialization of jet flows 
Jet plume computations for Ares and Orion flight vehicles involved very high nozzle pressure ratios that 

presented severe startup problems with USM3D. In the earlier USM3D code, cells could only be initialized to 
freestream conditions at startup. When a jet boundary surface supporting a very high density, pressure, and 
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temperature falls adjacent to volume cells initialized to freestream conditions, highly unstable and volatile non-
physical numerical instabilities are produced. This was resolved by initializing a subset of cells inside the nozzle or 
plenum near the jet boundary surface with the approximate jet conditions. A simple scheme was contrived for 
initializing volume cells using the existing minimum distance function devised for the turbulence models. During 
preprocessing of the grid, cells within a desired distance from selected surface patches inside the nozzle or plenum 
are flagged for initialization.  

The robustness of this technique is demonstrated in figure 6 on the Apollo Launch Abort System. With a 
challenging nozzle pressure ratio of 4,200 in a freestream Mach number of 4, the solution readily started and 
subsequently converged into a strong jet/surface interaction flow. 

3. Extended 2-equation turbulence models 
The need for better physical modeling of jet flows in the USM3D turbulence models became apparent early 

during the Orion and Ares campaigns. Several approaches to address this deficiency have been advanced in the 
literature to modify the turbulence transport equations in a variety of ways. Some of the most proven and simple 
modifications to two-equation turbulence models have been selected and implemented in the USM3D flow solver19. 
Table 1 shows the range of turbulence models in USM3D. As denoted by cross-hatching in table 1, the 
modifications include the addition of correction terms for compressibility (Comp) and pressure dilatation terms (PD) 
in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the 
Boussinesq’s closure model coefficient for high-temperature (Temp) jets. Two compressibility correction 
formulations are available, one from Sarkar and another from Wilcox. An extensive guideline study, yet to be 
published, was performed on the Orion LAS with Abort Motors and Attitude Control Motors that led to the selection 
of the SST with Comp+PD corrections as the preferred model for the jet-interaction computations. 
 

Table 1. Available turbulence models in USM3D ver. 20100611. 
(New enhancements19 denoted by cross-hatching) 

Corrections Turbulence Model Standard 
Comp Comp+PD Temp  

DES Hybrid 
RANS/

LES 
SA       
SST       

k-ε linear       
k-ε ARSM 
(Girimaji) 

      

k-ε ARSM (SZL)       
k-ω (Wilcox) 2006 and 1988 models    

 

V. Enhancements for Large-Scale Application 

A. Script-based run processes 
The effective use of TetrUSS in a production role required more than just improving VGRID and USM3D 

capabilities. Such tasks necessitate the rapid generation of dozens of grids and hundreds of flow solutions, which 
inherently present challenges in case management, data management, data analysis and post-processing, and quality 
control. These are process-related functions that were addressed using various scripting procedures. Scripts were 
developed to execute and manage processes for Ares and Orion, such as directory management, job submittals, best 
practices, post processing, data extraction, data plotting, and archiving. Examples will be included in the section on 
sample applications. 

B. Data analysis 
The Ares and Orion projects had some specific data analysis requirements that necessitated new processes and 

some modest development of capability. Process scripts were setup to 1) extract sectional load distributions, 2) 
subtract surface pressure values to create ΔCp contours plots, 3) a cross-sectional cutter utility for creating Cp line 
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plots, and 4) enhanced component force and moment integration capability to quantify loads on small features of the 
Ares rocket. 

1. Sectional Load Distributions 
The Ares structural and aeroelastic analyses require the aerodynamic loads to be defined at the launch vehicle 

centerline. A process was developed to transfer aerodynamic loads from a general three-dimensional unstructured 
surface mesh to the launch vehicle centerline. The process is based on the discrete data transfer technique developed 
by Samareh20. This technique guarantees conservation of aerodynamic forces and moments to within machine 
accuracy. The algorithm is described in appendix B. 

2. ΔCp surface contour plots 
Jet interference effects were best discerned using ΔCp surface contour plots. This involved extracting the 

difference in contours of surface pressure coefficient, Cp, between jets on and jets off conditions. A simple ΔCp 
surface contour process was developed using the TecPlot® analysis tool. The result is a color contour map displaying 
aerodynamic influence from the jets. Examples of this capability will be included with the sample applications in the 
next Section. 

3. Cross-sectional cutter for Cp line plots 
Capabilities within TecPlot® were exploited to automatically extract surface line plots of Cp. Process-control 

scripts were developed to create multiple comparison plots with experimental data. Examples of this capability will 
be demonstrated on the Ares and Orion vehicles in the next Section. 

4. Enhanced component force and moment integration 
An effort was initiated during the course of Ares I ADAC-2A (A101) computational analysis to establish a 

procedure to isolate the contribution from each protuberance toward vehicle’s total integrated aerodynamic forces 
and moments. A sample result from this analysis is presented in figure 7 that displays axial force contribution from 
either an individual or a group of protuberances as a fraction of vehicle’s total axial force at various Mach numbers. 
The computed results in figure 7 readily indicate that among all protuberances, the Booster Deceleration Motors 
(BDMs), stiffeners/kick rings, and LAS nozzles principally contribute toward the total axial force. It can also be 
seen that the axial force contribution from BDMs peaks at Mach 0.9 and decreases thereafter with increasing speed. 
Similar analysis has also been performed for all other computed coefficients. Such a data analysis has aided the 
design of vehicle protuberances from an aerodynamic perspective.  

VI. Sample Applications 
Since 2006, an extensive amount of vetted computational aerodynamic and loads data have been delivered to the 

respective projects for the Ares I, I-X, and V launch vehicles and the Orion CEV and LAS configurations. Over 
7,000 USM3D solutions have been generated on the Ares vehicles, and well over 1,000 solutions produced on the 
Orion configurations. The following describes some typical applications of the TetrUSS toolset to the Ares and 
Orion vehicles. 

A. Ares I, I-X, and V Launch Vehicles 
1. Ares I Ascent Aero 
The Ares I Design Analysis Cycle (ADAC) outer mold line (OML) definition has evolved since 2006. During 

this evolution, aerodynamic databases have been developed for at least five major Ares I configurations with wind 
tunnel testing and CFD. CFD has played an important role in providing data for vehicle aerodynamics during ascent 
and first-stage-separation phases of a flight. CFD has also provided information on aeroelastic characteristics during 
the ascent phase. CFD solutions have been obtained using three flow solvers, namely, USM3D, OVERFLOW, and 
FUN3D. In the first two years of this project, extensive CFD computations were made to establish confidence in the 
ability of CFD to accurately simulate configurations similar to Ares I. This was accomplished via code-to-code and 
code-to-wind-tunnel comparisons. USM3D was selected as the primary flow solver for the aerodynamic assessment 
of Ares I during the ascent phase of flight. OVERFLOW was used to analyze aerodynamics of first-stage separation, 
whereas FUN3D was used to analyze aeroelastic characteristics of the vehicle. USM3D results have played a multi-
faceted role in the Ares I ascent aerodynamic studies as described below. 

 Due to inherent limitation of wind tunnel measurements associated with a slender geometry, comprehensive 
measurements of surface pressures is very difficult. Therefore, USM3D CFD results were anchored at selected 
locations and conditions with experiment and then used to provide more detailed vehicle surface pressures and 
sectional line loads. These data have been used by various groups for venting and debris analysis and load analysis 
for the Orion capsule and individual launch vehicle protuberances. Since early 2007, majority of USM3D results 
were completed prior to any wind tunnel testing. These predicted results aided wind tunnel model design, 
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protuberance fabrication, test matrix development, and instrumentation in the region of major flow variations. The 
USM3D predictions were validated against subsequently available wind tunnel test measurements21-23. As shown in 
the following, and in reference 24, good correlation between USM3D predictions and wind tunnel data further added 
confidence in the validity of the CFD results. Consequently, USM3D results were utilized in a number of trade 
studies to assess aerodynamic effects due to geometrical modifications and repositioning of the existing 
protuberances and addition of new ones to improve vehicle performance. 

The Guidance, Navigation, and Control (GN&C) aerodynamic database was primarily developed from the wind 
tunnel data on the 1-percent model due to its ability to generate a large quantity of data in a timely manner. The 
USM3D force and moment results were utilized to provide flight Reynolds number increments to the wind-tunnel 
derived database as described in reference 25. 

USM3D was also used to generate the aerodynamic database for jet interactions from the Roll Control System 
(RoCS) on the Ares I full protuberance configuration. All USM3D computations were based upon ideal gas 
modeling of the flow. The baseline computational grid for this study was constructed following the best practices for 
the Ares I ascent power-off condition. Approximately 2 million grid cells surrounding each of the 12 RoCS thrusters 
were added to provide adequate grid resolution to support plume development and interactions with the free-stream 
flow. Reference 26 provides more details about this study.  

During the entire Ares I project, USM3D solutions for the ascent phase of the vehicle were based on tetrahedral 
grids that ranged from 10 million cells for the clean configuration at wind tunnel conditions to 90 million cells for 
full protuberance RoCS configuration at flight conditions. A converged solution typically needed about 20,000 
iterations and 5,000 CPU hours on NAS Pleiades Harpertown cluster. Nearly 1,000 USM3D solutions were 
generated within two months for the latest Ares I configuration (ADAC-3 A106) to satisfy all project requirements 
for CFD data. Extensive use of scripts was made to set up (1) input stream for various freestream Mach numbers (2) 
grid rolling necessary for generating solutions at various roll angles (3) run directories for various solutions (4) user 
alerts for solution status, and (5) data extraction and graphical reduction of results. Use of scripts resulted in hands-
off production of data in support of project requirements. Sample validation results from these studies are presented 
below.  

Figure 8 demonstrates convergence history for the Ares I A106 USM3D solution obtained at Mach 1.6, an angle 
of attack of 8º, a roll angle of 0º, and at wind tunnel Reynolds number. All the six components of forces and 
moments around the vehicle geometry were converged to within a certain percentage of their average values over 
the preceding 2,000 iterations. A value of 0.1% was used for the axial as well as normal forces and pitching moment 
whereas a value of 0.5% was used for the side force and rolling as well as yawing moments. As seen from the figure, 
lateral forces and moments took longer to achieve prescribed convergence criterion. The results shown in the figure 
8 have been automatically generated using scripts. 

The Ares I ADAC-2B (A103) configuration has been tested at three wind tunnel facilities21-23 covering low 
subsonic to high supersonic flow conditions and low to high Reynolds number. A sample comparison of a USM3D 
solution with wind tunnel measurements for this configuration at Mach 1.6, an angle of attack of 7º, and low 
Reynolds number wind tunnel conditions is presented in figure 9. Comparison of computed and measured surface 
pressures along the top centerline and around one of the largest protuberances (LH2) on the vehicle is presented in 
the figure. USM3D validation results for the same configuration using transonic high Reynolds number wind tunnel 
test23 data can be found in reference 24. Assessment of USM3D results at flight Reynolds number is presented later. 

Comparison of the sectional normal load distributions over the Ares I A103 clean configuration as obtained from 
USM3D and wind tunnel data at various Mach numbers is presented in figure 10. As is evident from the figure, 
USM3D predicted the sensitivity of sectional loads to the changes in free stream Mach number. Sectional load 
extraction utility described earlier was used to derive sectional load variations along the stream wise direction. 

2. Ares I-X Flight Test Vehicle Configuration 
The Ares I-X is the first Flight Test Vehicle (FTV) for Ares I. For the Ares I-X FTV, USM3D flow solver was 

used to conduct all pre-flight simulations that were incorporated into the forces and moment databases. The merged 
liftoff, ascent and high angle-of-attack aero and line loads databases provide the basis for the GN&C algorithms and 
were used to calculate the trajectory and the footprint for the recovery of the first stage as well as for the loss of 
control or abort cases.     

The baseline configuration for Ares I-X FTV was Ares I ADAC-2A (A101) full protuberance configuration for 
which a wind tunnel derived database existed. USM3D solutions were used to account for the changes in 
configuration between A101 and Ares I-X FTV and to generate an Ares I-X FTV database at wind tunnel 
conditions. Additional USM3D solutions were generated at Ares I-X FTV flight conditions that provided Reynolds 
number increments between wind tunnel and flight. The latter increments were included in the dispersion bounds 
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that were provided to the GN&C team. The RoCS Jet Interaction (JI) flight database was developed from hundreds 
of USM3D solutions. 

The generation of Ares I-X FTV aerodynamic database, and comparison of pre-flight computations and flight 
data are detailed in reference 27. A sample result from this effort is presented in figure 11 that shows longitudinal 
surface pressure distributions near the front of the vehicle at four azimuth locations. The USM3D predictions were 
obtained using two different turbulence models, namely, SA and SST. The computed pressures from two models are 
nearly identical. The results show a very good correlation between USM3D predictions and flight measurements. 

Over the entire Ares I-X project, more than 5,000 USM3D solutions have been generated based on grids that 
consisted of 70-140 million tetrahedral cells. All of these solutions have been generated on NAS Pleiades and Altix 
supercomputers. A typical Ares I-X solution was started and run with spatially first-order differencing for a 
prescribed number of iterations, then switched to globally second-order differencing for the remainder of the 
computation. With most numerical flow solvers, strong shocks and sharp corners can often induce locally non-
physical phenomenon such as spurious entropy, negative pressures, or excessive pressure levels. For the Ares I-X 
computations, cells with pressure dropping below a minimum threshold of 0.0014 of freestream pressure or 
exceeding a maximum threshold of 20-percent above freestream total pressure were locally switched to first-order 
differencing to cushion any potential instability. 

3. Ares V Cargo Launch Vehicle 
The Ares V launch system is in an early stage of planning and design with attendant revisions to vehicle 

configuration. Due to limited availability of wind tunnel data, CFD solvers are being utilized to generate initial 
aerodynamic databases for the Ares V project. In this effort, OVERFLOW is the primary flow solver whereas 
USM3D is lending a supporting role providing approximately 40% of data. Reference 28 provides details of 
database development and comparisons of CFD and wind tunnel results. 

USM3D is also being used to establish best practices for investigating Plume Induced Flow Separation (PIFS) 
characteristics along the future Ares V heavy lift vehicle. In this precursor study29, USM3D is used to compute PIFS 
along the Saturn V heavy lift launch vehicle with F-1 rockets firing. Flight test PIFS data at four supersonic Mach 
numbers are available for this configuration. The USM3D solutions have been computed at the corresponding 
supersonic freestream speeds, with angle of attack of 0º, sideslip of 0º, and flight Reynolds number. In this study, 
sensitivity of the computed results to grid resolution, turbulence models, and engine exit boundary condition 
specification approaches is evaluated. As an illustration, the Mach contours along the Y=0 plane intersecting the 
Saturn V vehicle is shown in figure 12a at the Mach = 6.5 condition29. PIFS can be seen up the side of the vehicle 
from the nozzles by the blue contours of low Mach number flow. The Mach contours along the Y=0 plane 
intersecting the Ares V vehicle are shown in figure 12b for the Mach 6.5 condition. 

B. Orion CEV Launch Abort System 
The aerodynamic database development of the Orion Launch Abort System (LAS) is led out of NASA Johnson 

Spaceflight Center (JSC) under the CEV Aerosciences Project (CAP) that provides multi-center coordination for 
wind tunnel testing (WTT) and computational support. TetrUSS/USM3D is contributing to CAP by investigating 
various sensitivities, such as WTT sting interference effects, WTT-to-Flight Reynolds number scaling with Abort 
Motors (AM), AM thrust offset, and Abort-Motor/Attitude-Control-Motor (AM/ACM) jet interactions. Each of 
these tasks required a delivery of hundreds of flow solutions with stringent data requirements and very tight 
schedules. Hence, the TetrUSS enhancements discussed earlier were critical for delivering a quality product. The 
following will describe a typical task within the CAP environment. 

A study was conducted to quantify WTT-to-Flight Reynolds number scaling for the LAS 60-AA WTT 
configuration with powered AM jets (fig. 13). This task required the delivery of 112 USM3D simulations of the 
Orion LAS with AM jets firing, in configurations representing both free-flight and the 60-AA WTT. Data covered a 
Mach range from 0.7 to 2.5 and angles of attack from 0º to -16º in 4º increments to match the available wind tunnel 
data. The objective was to produce data for evaluating USM3D flow simulations of WTT AM jet increments and 
absolute magnitudes through comparison with wind tunnel data and similar computations performed using Cart3D 
and OVERFLOW. In addition, the analysis of WTT and Flight conditions provided WTT-to-Flight increments that 
were used for database corrections and uncertainty evaluations. As in all of the tasks, the computational data had to 
be post-processed and delivered under specific requirements for archiving. This was accomplished using numerous 
scripting processes. 

Four baseline grids were generated for this task. Typical surface triangulations are shown in figure 14. Two grids 
were required for the vehicle with WTT AM nozzle inner mold lines (IML), and two for the IML of the Flight AM 
nozzle. Based on prior guideline studies, a finer baseline grid of approximately 25 million cells was required for the 
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transonic Mach conditions of 0.9 and 1.05, and a coarser grid of approximately 20 million cells was needed for all 
other Mach numbers. A crosscut of the volume cells of the WTT coarse grid is shown in figure 15. Note that the 
cells tend to be smaller close to the geometry and coarsen in the field away from the surface, which is characteristic 
of the Advancing Front Method. This grid does not provide adequate resolution to model the AM jet plumes and 
vehicle base flows. Hence, the CRISP CFD® grid adaption code was used to refine the grid around errors of density, 
velocity, and pressure as illustrated in figure 16 for Mach 0.9 with the AM jet firing with a thrust coefficient, CT=4. 
Note the significant clustering of field cells in the AM jet plume and vehicle wake regions. For this case, the 25 
million cell baseline grid was adapted resulting in an increase to 34 million cells. 

Prior to the Orion LAS AM and ACM jet tasks, an extensive guideline study was performed to develop best 
practices and estimate solution uncertainty. A wide range of strategies for creating the baseline grids, adapting the 
grid, and turbulence models were explored. A representative analysis of the effect of turbulence model is presented 
in figure 17 for the LAS 60-AA configuration with CT=4 and one adaptive grid strategy. This plot compiles a 
weighted statistical composite of how much each solution deviated from the experimental data according to: 
 

         

where         CX=CN, CA, CL,CD, CM  and  wi=1,1,1,1,2 

The pitching moment CM was weighted twice as heavily as the other coefficients because it carried more 
importance and uncertainty in the aero database development. From figure 17, the SST Sarkar Comp + PD was 
selected as the turbulence model of choice having the least statistical deviation from experiment. Note also the large 
deviations at Mach 0.9. Wind tunnel Schlieren imagery suggests that this deviation was most likely caused by strong 
wall-interference effects in the test data at transonic conditions. 

The best practices developed from the guideline study were captured in script-based run processes designed to 
execute and manage all runs. These scripts provided complete hands-off execution of preprocessing, job submittal, 
adapting the grid, terminating solution at convergence, post-processing and plotting results, and archiving the 
solutions. The following script-controlled process was developed for LAS jet flow tasks: 

1. Run 1st-order USM3D flow solution on baseline grid for 3,000 iterations using SST Sarkar 
Comp + PD turbulence model. 

2. Perform grid adaptation using CraftTech CRISP CFD® code. 
a. Adapt to errors of density, velocity, and pressure (ρ,u,v,w,p) 
b. Constrain minimum inviscid spacing at 1.0 inches (full scale) 
c. Interpolate baseline solution onto adapted grid 

3. Restart interpolated solution on adapted grid with 1st-order scheme for 1,500 iterations. 
4. Restart 1st-order solution with 2nd-order scheme. 
5. Automatically stop 2nd-order solution when the following convergence criteria are met. 

a. Variation of CL, CD, CM, CN, and CA less than 1-percent over last 1,000 iterations 
b. Average of last 1,000 iterations within 1-percent of average of preceding 1,000 iterations 
c. Absolute difference in the minimum and maximum values of the coefficients over last 1,000 

iterations less than 0.004  
d. Residual errors decrease by 3 orders of magnitude and remain constant or keep 

decreasing 
Extensive analysis and convergence plots were generated during post-processing. Figure 18 shows a typical 

crosscut of Mach contours with AM jets on and off, along with the corresponding surface Cp contours. Also shown 
is a ΔCp=Cp,AM_ON - Cp,AM_OFF  surface contour plot which illuminates the jet interactions. Similarly, Cp line plots 
were created and compared with WTT data as represented in figure 19.  

The adapted grids in this study ranged from 26- to 30-million cells, with the exception of the grids for transonic 
Mach 0.9 and 1.05 that ranged from 32- to 35-million cells. The solutions were run on the NAS Columbia Altix 
computer typically with 128 processors. Resource usage ranged from 1,000- to 3,800-CPU hours per solution, with 
an average of 2,100-CPU hours per solution for the 112 cases. 
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VII. Concluding Remarks 
The NASA Constellation program is relying heavily on Computational Fluid Dynamic (CFD) tools that 

complement ground-based wind tunnel testing by aiding the design and aerodynamic database development for the 
Ares I Crew Launch Vehicle (CLV), Orion Crew Exploration Vehicle (CEV) and Launch Abort System (LAS). The 
TetrUSS system serves as the lead CFD tool within the Ares project, providing over 7,000 solutions to develop the 
computational aerodynamic database and loads for the vehicles up through supersonic speeds. The USM3D solver is 
also lending critical support to the aerodynamic development of the CEV and its LAS configuration with over 1000 
solutions, but only after the implementation of considerable enhancements. 

The fast-paced application-driven environment has presented many challenges and opportunities to implement 
required capabilities within the TetrUSS system. Key enhancements added to the VGRID grid generator and its 
application practices enabled the routine generation of numerous viscous tetrahedral grids between 30 and 100+ 
million cells on the LAS and Ares flight vehicles. A commercial tool for autonomous adaption of the grid to the 
flow solution was seamlessly folded into processes for computing strong jet interaction flows on the LAS. Memory 
bottlenecks that limited USM3D application to grids in the 20 to 30 million-cell ranges were removed from the flow 
solver to extend its range to grids up to 623 million cells. Improvements were made to coding practices that led to 
code execution at least 5- to 6-times faster than a 2006 version. Robustness of computing the strong jet interactions 
of the LAS was enabled by the implementation of new flux schemes, better linearization, and new initialization 
functions. The accuracy of the jet interaction flows was improved by the implementation of compressibility and 
temperature corrections within several two-equation turbulence models. Scripting processes were developed to 
execute and manage thousands of flow solutions. Data analysis capability was developed for extracting section load 
distributions, ΔCp surface contour plots, and organizing extensive component loads. 

Over the past five years, this tool enhancement effort has largely been successful because of the close day-to-day 
collaboration between in-house code experts and the project application experts. The impact of the enhanced 
TetrUSS system on the Constellation program has been substantial. Although largely driven by the urgent needs of 
the Constellation program, these enhancements will clearly benefit the broader aeronautics community. 

Appendix A – Method for Prescribing Jet Boundary Conditions  
The methodology for prescribing the Ares and Orion LAS jet boundary conditions in ideal-gas flow solvers 

presented below was provided via. Excel spreadsheet by Mr. James Greathouse at NASA Johnson Spaceflight 
Center. The jet boundary conditions (BC) are defined on a plane within the nozzle slightly down stream of the throat 
as illustrated in the sketch below. A general assumption of one-dimensional isentropic flow is applied to determine 
the flow conditions at the nozzle exit plane, and then transfer them to the BC plane.  

 
 

 
 

 
 

 
The relations for one-dimensional isentropic flow through a nozzle are 

    (A1) 

         (A2) 

 
Schematic of nozzle jet boundary condition prescription. 



 

 
American Institute of Aeronautics and Astronautics 

 

 

13 

          (A3) 

          (A4) 

The following process is used to determine the jet boundary conditions on the BC plane. 

1. Prescribe initial conditions and parameters:  

a.      Freestream conditions 

M∞ , p∞ , T∞ , ρ∞ , q∞ , , Sref , γair , and  Rair 

b. Jet plenum gas properties 
γjet , Rjet , and Ttot,jet 

c. Geometric areas for nozzle exit, throat, and BC plane 
Ae , At , and ABC 

2. Expand plenum chamber conditions to nozzle exit plane using jet gas properties 

a.     Using the prescribed value of γjet, adjust nozzle exit Mach number, Me,jet, in equation A1 to match the 
choked area ratio with the geometric area ratio,  

(Ae/A*)jet=Ae/At  
                 ⇒ This defines Me,jet 

b. Compute isentropic relations at nozzle exit by substituting γjet and Me,jet into equations A2-A4  
(ptot/pe)jet      (Ttot/Te)jet      (ρtot/ρe)jet  

3. Calculate nozzle exit plane conditions assuming jet gas properties 

a.      Define a target nozzle thrust coefficient 
CT,target=target_thrust/q∞Sref 

b. Adjust plenum chamber pressure, ptot in thrust equation 
 

until CT matches CT,target. The cos(25o) imposes the CT of each offset abort nozzle (see fig. 16) in the 
body axial direction. 
⇒ This determines ptot for the jet conditions 

c.     Complete the nozzle exit conditions from known quantities 
pe,jet=ptot/(ptot/pe)jet 
Te,jet=Ttot/(Ttot/Te)jet 
ρe,jet=pe,jet /(Rjet Te,jet) 
Ve,jet=Me,jet*sqrt(γjet RjetTe,jet)  

4. Switch from jet gas to air and recalculate chamber conditions. The general assumption is to maintain the thrust. 
Since thrust is a function of exit-plane pressure and jet momentum, the values nozzle exit pressure, density, and 
velocity will remain unchanged. The primary impact of switching gas from jet to air is to recompute the nozzle 
exit temperature. This directly impacts the speed of sound and exit Mach number, which in turn alters the values 
of the isentropic relations in equations A2-A4 and the total conditions. 
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a.     Adjust nozzle exit jet temperature and Mach number for air 
Te,air=pe,jet /(Rair ρe,jet) 
Me,air=Ve,jet / sqrt(γair Rair Te,air) 

b. Assign remaining jet properties to nozzle exit as air 
ρe,air = ρe,jet 

pe,air = pe,jet 
Ve,air = Ve,jet 

c.     Perform sanity check of thrust by comparing new CT,air with CT,target  
 

d. Compute new isentropic relations at nozzle exit using equations A2-A4 with air properties γair and exit 
Mach number, Me,air  

(ptot/pe)air      (Ttot/Te)air      (ρtot/ρe)air 

e.     Compute for total jet conditions with assumed air 
ptot,air= pe,air *(ptot/pe)air 
Ttot,air= Te,air *(Ttot/Te)air 
ρtot,air= ρe,air /(ρtot/ρe)air 

5. Calculate A/A* at the BC plane just down stream of the throat 

a. Use equation A1 to compute new (Ae/A*)air using γair  and Me,air 

b. Compute new choked throat area A* is 
 A*=Ae/(Ae/A*)air 

6. Propagate the exit plane conditions to the BC plane  

a. Using γair, adjust Mach number on the BC plane, MBC,air, in equation A1 until its (A/A*)BC matches ABC 

/A* 

⇒ This defines MBC,air 

b. Substitute γair and MBC,air into isentropic relations equations A2-A4 to compute BC-plane ratios  
(ptot /pBC)air        (Ttot /TBC)air        (ρtot /ρBC)air 

c.     Compute the BC-plane properties 
pBC=ptot,air /( ptot /pBC)air 
TBC=Ttot,air /(Ttot/TBC)air 
ρBC=ρtot,air(ρtot/ρBC)air 
VBC=MBC*sqrt(γair RairTBC) 

d. Compute USM3D non-dimensional BC values using freestream conditions:  
ρusm3d=ρBC /ρ∞ 
Vusm3d=VBC /  

pusm3d=pBC /( γair p∞) 

7. Apply jet boundary conditions  

a. Directly apply ρusm3d and pusm3d across BC plane 



 

 
American Institute of Aeronautics and Astronautics 

 

 

15 

b. Smoothly fan the velocity vectors from the center of the BC plane until parallel to the nozzle walls. 
Maintain nozzle axis component of Vusm3d constant across plane. 

c.     Initialize the tetrahedral volume cells within the nozzle to approximate the conditions on the BC plane 
to facilitate startup. 

Appendix B – Launch Vehicle Line Load 
The Ares structural and aeroelastic analyses use line load coefficients that are defined as the axial derivatives of 

force coefficients (e.g., dCN/dx) on a set of user-defined points along the vehicle centerline. The launch vehicle 
surface is defined by a set of triangles, and CFD results are provided as pressure coefficients and skin friction 
coefficients at each node on the launch vehicle surface. The algorithm described here maintains conservation of 
forces and moments: the integration of line load will reproduce the CFD aerodynamic force and moment coefficients 
within machine accuracy. 
 

The line load coefficients are required at each user-defined point (i), which is surrounded by a control volume 
(Δxi) defined as: 
 

 

where si represents the center of control volume surrounding node i (see fig. B1). The integrated aerodynamic 
force and moment coefficients (ΔC) are calculated for each control volume (Δxi). This is a computationally intensive 
process that requires cutting surface mesh at discrete set of planes to calculate loads for triangles within the control 
volume and triangles partially cut by the control volume boundaries. The aerodynamic line load coefficients are then 
calculated as: 

 

 

 
 
 
 
 
  

 
 
 

Figure B2 shows a sample result for an Ares-I configuration. The blue line shows vehicle centerline with 
diamond symbols for the locations of user-defined points. Black line shows the outline of launch vehicle shape. The 
red line shows the variation of line load for normal force coefficient, CN. 

 
Figure B1. User-defined point distribution and corresponding control 

volume 
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a)- Major components. 

 

 
b)- Nominal flight trajectory (from ref. 2). 

 
Figure 1. Major components and nominal flight trajectory of Ares-I and Orion flight 
vehicles. 
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Figure 2. The Tetrahedral Unstructured Software System 
(TetrUSS). 

 
Figure 3. Baseline grid for the Apollo Launch Abort System (LAS) with Abort 
Motor (48.3 million cells). 
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Figure 4. Front view of ARES I ADAC-2B (A103) configuration with 
protuberances and a view of computational grid around selected region. 

 
Figure 5. USM3D solutions for Apollo Launch Abort System using SA and SST 
turbulence models at free stream Mach 4, 5, and 6. Solutions obtained without 
plumes. 
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Figure 6. USM3D solution for Apollo Launch Abort System using SST turbulence model 
for free stream Mach 4, Nozzle pressure ratio 4,200. 

 
Figure 7. Individual/group protuberance(s) contribution to the computed CAF for the 
ADAC-2A (A101) C1 configuration, α=7o, WT Reynolds number. 

Mach number variations, 
m050a7 is M=0.50, α=7º 
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Figure 8. Typical solution convergence for the Ares I ADAC-3 (A106) configuration, 
M=1.6, α=8o, Φ=0o, WT Re. 

 
Figure 9. Computed and measured surface Cp on the Ares I ADAC-2B (A103) 
configuration, M=1.6, α=7o, WT Re. 
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Figure 10. Computed and measured line loads over the frustum for the clean ADAC-2B 
(A103), α=7o, WT Re. 

 
Figure 11. Comparison of USM3D surface pressures with the flight test data for 
the Ares I-X Flight Test Vehicle. Computations using SA and SST turbulence 
models (from ref. 27). 
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(a)                                                                         (b) 

Figure 12. Symmetry plane Mach contours for two heavy lift launch vehicle 
configurations at M=6.5, α=0º, β=0º, flight Reynolds number. (a) Saturn V rocket (b) 
Ares V rocket (from ref. 29).   

 
Figure 13. The Project Orion LAS 60-AA wind tunnel model mounted in the 
NASA Ames Research Center 11-foot tunnel. 
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Figure 14. Coarse grid surface triangulation for LAS 60-AA configuration. 

 
 

Figure 15. Cross cut of baseline coarse grid (20 million cells) for the LAS 60-AA 
WTT configuration. 
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Figure 16. Solution adapted grid from guideline study on LAS 60-AA for 
M∞=0.9, α=-8º, AM_CT=4, SST Sarkar Comp + PD turbulence model (adapted 
grid has 34 million cells, baseline grid has 25 million cells). 

 
Figure 17. Statistical assessment of USM3D turbulence model variations from 
experimental data for LAS 60-AA. 
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Figure 18. Typical Mach crosscut and surface Cp, ∆Cp contour plots for the LAS 60-
AA configuration. M∞=2.5, α=-8º, ReD=2.5x106, AM_CT=3.689. 

 
Figure 19. Typical surface Cp line plots for the LAS 60-AA configuration. 
M∞=2.5, α=-8º, ReD=2.5x106, AM_CT=3.689. 


